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Notes: Phase Transitions and Partition of Integers

I. MOTIVATION

1. Biology: Molecular motors, microtubules, bacteria.

2. Granular Matter: granular rods and chains.

3. Phase synchronization.

II. THE ROD ALIGNMENT MODEL

In the rod alignment model, introduced by Aranson and Tsimring, there is an infinite

number of identical polar rods, each with an orientation

−π ≤ θ ≤ π. (1)

The rod alignment changes via two competing mechanisms:

1. Alignment by Pairwise Interactions: The rods become aligned via irreversible

pairwise interactions. As a result of the interaction between two rods with orientations θ1

and θ2, both rods acquire the average orientation as follows (see figure 1):

(θ1, θ2) →







(
θ1+θ2

2
, θ1+θ2

2

)
|θ1 − θ2| < π

(
θ1+θ2+2π

2
, θ1+θ2+2π

2

)
|θ1 − θ2| > π.

(2)

Of course, addition and subtraction are implicitly taken modulo 2π.

FIG. 1: Illustrating of the alignment process.

2. Diffusive Wiggling: There is also randomness in the form of a white noise: each rod

wiggles in a diffusive fashion, and this process is characterized by the diffusion constant D.

Specifically, in addition to the alignment process (2), the orientation of a rod is subject to

white noise

dθ/dt = η with 〈η(t)η(t′)〉 = 2Dδ(t − t′). (3)
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III. THE MASTER EQUATION

Let P (θ, t) be the probability distribution function of rods with orientation θ at time t.

It is normalized to one,
∫ π

−π

dθ P (θ, t) = 1. (4)

This distribution function satisfies the integro-differential master equation

∂P (θ)

∂t
= D

∂2P (θ)

∂θ2
+

∫ π

−π

dφP

(

θ −
φ

2

)

P

(

θ +
φ

2

)

− P (θ). (5)

The first term on the right-hand-side describes diffusion. The integral accounts for gain of

rods with orientation θ as a result of alignment of two rods with an orientation difference of

φ, while the negative term accounts for loss due to alignment. Without loss of generality,

the alignment rate is set such that the loss rate equals one.

A. Goal: Steady-state distribution

0 = D
∂2P (θ)

∂θ2
+

∫ π

−π

dφP

(

θ −
φ

2

)

P

(

θ +
φ

2

)

− P (θ). (6)

The disordered state is always a solution of this equation

Pdisordered(θ) =
1

2π
. (7)

IV. THE FOURIER TRANSFORM

Definition

The governing master equation (6) is nonlinear and nonlocal. Its convolution structure

suggests using the Fourier transform

Pk =
〈
e−ikθ

〉
=

∫ π

−π

dθ e−ikθ P (θ). (8)

The zeroth mode equals one, P0 = 1, because of the normalization, and also, Pk = P ∗
−k. The

angular distribution can be expressed as a Fourier series

P (θ) =
1

2π

∞∑

k=−∞

Pk eikθ. (9)
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Rotational Symmetry

Since the alignment process (2) is invariant with respect to an overall rotation

θ → θ + ϕ with 0 ≤ ϕ ≤ 2π.

If P (θ) is solution of (6), so is P (θ + ϕ). Consequently, if Pk is solution, then so is Pke
ikϕ.

The order parameter

The order parameter

R =
∣
∣〈eiθ〉

∣
∣ = |P−1| , (10)

with the bounds 0 ≤ R ≤ 1 probes the state of the system. A vanishing order parameter

indicates an isotropic, disordered state, while a positive order parameter reflects a nematic,

ordered state.

Closed equations for the Fourier transform

We focus on the steady state. Substituting the Fourier series (9) into the master equation

(6), and integrating over φ, we find that the Fourier transform satisfies a set of coupled

nonlinear equations
(
1 + Dk2

)
Pk =

∑

i+j=k

Ai−j Pi Pj (11)

with

Aq =
1

2π

∫ π

−π

dφ eiqφ/2 =
sin πq

2
πq
2

.

The coefficients Aq satisfy

Aq =







1 q = 0;

0 q = 2, 4, . . . ;

(−1)
q−1

2
2

π|q|
q = 1, 3, . . .

and Aq = A−q. (12)

In (11), when k = 0, the sum contains only a single term, P0 = P 2
0 and indeed, P0 = 1.

Later, we will need to use the following constants

A1 =
2

π
, A2 = −

2

3π
. (13)
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Since P0 = 1 is known, the identical terms A−kP0Pk and AkPkP0 in the steady-state

equation (11) are linear in Pk, and thus, we move them to the left-hand side. Then Eq. (11)

becomes
(
1 + Dk2 − 2Ak

)
Pk =

∑

i+j=k
i6=0, j 6=0

Ai−j Pi Pj. (14)

V. THE “HOLY GRAIL”

We will work with the following compact nonlinear convolution equation

Pk =
∑

i+j=k
i6=0, j 6=0

Gi,jPi Pj. (15)

Coupling constants

The kernel Gi,j couples the ith and the jth Fourier modes

Gi,j =
Ai−j

1 + D(i + j)2 − 2Ai+j

. (16)

It has the following properties:

Gi,j = Gj,i (17a)

Gi,j = G−i,−j (17b)

Gi,j = 0, for |i − j| = 2, 4, . . . . (17c)

The governing equation (15) is nonlinear and moreover, for odd k, the sum contains an

infinite number of terms. Despite this, it is still possible to solve this equation analytically!

VI. EXACT SOLUTION

Repeated iterations

First, we notice that Eq. (15) can be iterated once, leading to a sum of products of three

Fourier modes

Pk =
∑

i+j=k
i6=0, j 6=0

∑

l+m=j
l 6=0, m6=0

Gi,j Gl,m Pi Pl Pm. (18)
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Clearly, this procedure can be repeated any number of times, leading to a sum over products

of any given number of Fourier modes.

Solution for small k

Let us spell out these equations for the lowest order terms

P2 = G1,1P
2
1 (19a)

P3 = 2G1,2P1P2 + 2G−1,4P−1P4 + · · · (19b)

P4 = G2,2P
2
2 . (19c)

We can solve for P2 and P4 in terms of P1 (equivalent to the order parameter)

P2 = G1,1P
2
1 (20a)

P4 = G2,2G
2
1,1P

4
2 . (20b)

How about P3? Well, we can simply substitute P2 and P4:

P3 = 2G1,2G1,1P
3
1 + 2G−1,4G2,2G

2
1,1P

4
1 P−1 + · · · . (21)

Generally, the kth Fourier mode can be written as an infinite series involving terms of the

form

P k+n
1 P n

−1 = P k
1 (P1 P−1)

n = P k
1 R2n

with n a positive integer. Recall that P1 = R eiϕ. Without loss of generality, we can set the

phase to zero, ϕ = 0. In other words, we pick the solution where

P1 = P ∗
1 = R.

Solution for general k

Since P1 = R, the Fourier modes can be written explicitly in terms of the order parameter

R

Pk = Rk

∞∑

n=0

pk,n R2n. (22)

Of course, p0,n = p±1,n = δn,0. Since pk,n = p−k,n it suffices to solve for k > 0.
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FIG. 2: The iterated integer partitions. Illustrated is the partition corresponding to p3,1 =

2G−1,4G2,2G
2
1,1. Each partition k = i + j with i 6= 0 and j 6= 0 generates a factor Gi,j . The

factor 2 accounts for the two equivalent partitions.

Relation with iterated integer partitions

The coefficients pk,n represent all iterated partitions of the integer k as follows

k = 1 + 1 + · · · + 1 + 1
︸ ︷︷ ︸

k+n

−1 − · · · − 1
︸ ︷︷ ︸

n

. (23)

Partition rules

1. k = i + j

2. i 6= 0 and j 6= 0

3. |k| 6= 1

4. Gi,j 6= 0.

The lowest terms (≤ fifth order)

p2,0 = G1,1, (24a)

p3,0 = 2G1,2G1,1, (24b)

p3,1 = 2G−1,4G2,2G
2
1,1, (24c)

p4,0 = G2,2G
2
1,1, (24d)

p5,0 = 2G1,4G2,2G
2
1,1 + 4G2,3G1,2G

2
1,1. (24e)
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Recursion equation for systematic evaluation

Substituting the series expansion (22) into the steady-state equation (15) and equating

the same powers of R, the coefficients pk,n satisfy

pk,n =
∑

l+m=n

∑

i+j=k
i6=0, j 6=0

pi,l pj,m. (25)

Since the indexes l and m are positive, this is now a recursion equation. Starting with

p0,0 = p1,0 = 1, and utilizing the symmetry pk,n = p−k,n, equation (25) is solved recursively.

This provides a systematic method for obtaining the coefficients pk,n.

Closed equation for the order parameter

The series (22) expresses all the Fourier modes in terms of the order parameter R. It

remains to obtain the order parameter R as a function of the diffusion constant D. By

Substituting the Fourier solution (22) into the governing equation (15) and setting k = 1,

we find that the order parameter itself can be expressed as an infinite series

R =
∞∑

n=1

rnR2n+1. (26)

The coefficients rn are given by the very same recursion equation (25)

rn =
∑

l+m=n

∑

i+j=1

i6=0, j 6=0

pi,l pj,m. (27)

The coefficient rn is the counterpart of the coefficients pk,n and it represents iterated parti-

tions of the number 1 as in (23). The partitions may not involve 0’s. Except for the very

first partition, the numbers ±1 may not be repartitioned (Fig. 2). The first few coefficients

are

r1 = 2G−1,2G1,1, (28a)

r2 = 4G−2,3G1,2G
2
1,1, (28b)

r3 = 4(G−2,3G−1,4 + G−3,4G1,2)G2,2G
3
1,1. (28c)
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The order parameter

In practice, one can calculate the order parameter R as a root of a polynomial of degree

N by truncating (26). For N = 3, substituting (12) and (16) into (28a) yields

r1 =
4

3π

1
4

π
− 1 − D

1

1 + 4D
,

and using (26) gives the cubic equation for the order parameter

R =
4

3π

1

Dc − D

1

1 + 4D
R3 Dc = 2A1 − 1 =

4

π
− 1. (29)

Two regimes:

Supercritical: For D ≥ Dc, there is only the trivial solution R = 0, corresponding to an

isotropic state where the rods are randomly aligned: Pk = δk,0 and P (θ) = 1

2π
.

Subcritical: For D < Dc, there is also the nontrivial solution (Fig. 3)

R =

√

3π

4
(1 + 4D)(Dc − D). (30)

This corresponds to a nematic phase in which the rods are partially aligned. Near the

transition point, this alignment is weak, but it becomes stronger and stronger as D decreases.

The result of Eq. (30) is approximate—only the cubic term in (26) has been maintained.

Close to the transition point, the corrections to the cubic equation (29) are negligible and

R ∼ C(Dc − D)β with β =
1

2
. (31)

As shown in the Appendix, the uniform state is stable for D > Dc but unstable for D < Dc.
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FIG. 3: The order parameter versus the diffusion coefficient. The order parameter was obtained

by solving polynomials of increasing order.
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The orientation distribution

Well below the critical point, we compute the coefficients pk,n and rn to higher order from

(25) and (27). The order parameter is then obtained by numerically solving (26), truncated

at the corresponding order. Since the Fourier modes decay exponentially with the wave

number

Pk ∼ Rk, (32)

and since the order parameter obeys 0 ≤ R ≤ 1, a moderate number of Fourier modes is

sufficient to accurately compute P (θ). The order parameter rapidly converges with N . For

instance, N = 11 already provided an accurate value for R (see Fig. 3). We note that at

this order, it is still possible to calculate the necessary partitions manually.

Once the order parameter is known, the Fourier modes are obtained from (22). The

steady-state distribution (9) becomes

P (θ) =
1

2π
+

1

π
R cos θ +

1

π
G1,1R

2 cos (2θ) +
2

π
G1,2G1,1R

3 cos (3θ) + O(R4). (33)

In the vicinity of the transition point, the lowest mode dominates. As the diffusion coefficient

decreases, the angle distribution becomes sharply peaked around θ = 0, reflecting that the

rods are strongly aligned (Fig. 4).

-1 -0.5 0 0.5 1
θ/π

0

1
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4

2π
P

(θ
)

D/D
c
=0.5

D/D
c
=0.8

D/D
c
=0.99

D/D
c
=1

FIG. 4: The angular distribution for various values of D. The angle distribution was obtained

from the first 15 Fourier modes.
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VII. GENERAL ALIGNMENT RATES

It is also possible to analyze situations in which the alignment process (2) occurs with

arbitrary alignment rate

K
(
θ1 − θ2) K(φ) = K(−φ).

Without loss of generality, impose the normalization,

1

2π

∫ π

−π

dφK(φ) = 1.

The master equation becomes

0 = D
d2P

dθ2
+

∫ π

−π

dφK(φ)P

(

θ −
φ

2

)

P

(

θ +
φ

2

)

− P (θ)

∫ π

−π

dφK(φ)P (θ + φ). (34)

The Fourier modes satisfy a generalization of (11)

Dk2Pk =
1

2

∑

i+j=k

(Ai−j + Aj−i − A2i − A2j) PiPj. (35)

The constant Aq is now

Aq =
1

2π

∫ π

−π

dφ eiqφ/2K(φ).

Again A0 = 1 and Aq = A−q, but it is not necessarily true that these constants vanish at

even indexes as was the case for uniform alignment rates. By excluding the zero modes

i = 0 and j = 0 from the summation in (35), and by following the same steps, we recover

the governing steady-state Eq. (15). The generalized coupling constants (16) are

Gi,j =
1

2

Ai−j + Aj−i − A2i − A2j

1 + D(i + j)2 − 2Ai+j

. (36)

These coupling constants are manifestly symmetric Gi,j = Gj,i. We conclude that the series

solutions (22) and (26) hold for arbitrary alignment rates.

Repeating the steps above, the critical diffusivity is

Dc = 2A1 − 1.

The condition for having a phase transition is

A1 >
1

2
.
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For the hard-sphere rate K(φ) = 2

π
|φ|, then A1 = 4

π2 (2 − π), but since A1 < 1/2, the

system is always disordered. For the hard-sphere rate K(φ) = 2

π
|φ|, then A1 = 4

π2 (2 − π),

but since A1 < 1/2, the system is always disordered. For the more realistic hard-rod rate

K(φ) =
π

2
| sin φ|, (37)

and since A1 = 2

3
, the system undergoes a phase transition. We conclude that depending on

the alignment rate, there may or may not be an ordered phase.

We note that in the kinetic theory of gases, analytic solutions are feasible only for the

Maxwell model, where the collision rate is velocity independent, while the general Boltzmann

equation is not analytically tractable. Remarkably, the analytic solution presented above

does not require a constant rate and for example, the hard-sphere like collision rate K(φ) =

C|φ| can be solved analytically. The discrete nature of the Fourier spectrum enables this.

VIII. STABILITY OF THE UNIFORM STATE

The uniform state P (θ) = 1

2π
is always a steady-state of the master equation (6). To check

when this state is stable, we write P (θ, t) = 1

2π
+ p(θ, t). To linear order, the perturbation

satisfies
∂p

∂t
= D

∂2p

∂θ2
+

∫ π

−π

dφ
p(θ − φ/2) + p(θ + φ/2)

2π
− p. (38)

Let us take a periodic perturbation with wave number k and growth rate λ, that is, p(θ, t) ∝

eikθ+λt. Substituting this form into Eq. (38) gives the growth rate

λk = 2Ak − 1 − Dk2. (39)

The growth rate is positive only for the lowest mode, k = 1, and hence, stability is governed

by the smallest wave number k = 1 for which λ1 = Dc − D. Indeed, the uniform state is

unstable below the critical diffusion constant Dc = 4

π
− 1.

IX. CONCLUSIONS

1. Nonequilibrium phase transition.

2. Transition depends sensitively on alignment rates.

3. Boltzmann equation exactly solvable when Fourier spectrum is discrete!


